Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NAR Genom Bioinform ; 4(3): lqac066, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36110899

RESUMO

Single-cell RNA-seq (scRNA-seq) has emerged as a powerful technique to quantify gene expression in individual cells and to elucidate the molecular and cellular building blocks of complex tissues. We developed a novel Bayesian hierarchical model called Cellular Latent Dirichlet Allocation (Celda) to perform co-clustering of genes into transcriptional modules and cells into subpopulations. Celda can quantify the probabilistic contribution of each gene to each module, each module to each cell population and each cell population to each sample. In a peripheral blood mononuclear cell dataset, Celda identified a subpopulation of proliferating T cells and a plasma cell which were missed by two other common single-cell workflows. Celda also identified transcriptional modules that could be used to characterize unique and shared biological programs across cell types. Finally, Celda outperformed other approaches for clustering genes into modules on simulated data. Celda presents a novel method for characterizing transcriptional programs and cellular heterogeneity in scRNA-seq data.

2.
Genome Biol ; 21(1): 57, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138770

RESUMO

Droplet-based microfluidic devices have become widely used to perform single-cell RNA sequencing (scRNA-seq). However, ambient RNA present in the cell suspension can be aberrantly counted along with a cell's native mRNA and result in cross-contamination of transcripts between different cell populations. DecontX is a novel Bayesian method to estimate and remove contamination in individual cells. DecontX accurately predicts contamination levels in a mouse-human mixture dataset and removes aberrant expression of marker genes in PBMC datasets. We also compare the contamination levels between four different scRNA-seq protocols. Overall, DecontX can be incorporated into scRNA-seq workflows to improve downstream analyses.


Assuntos
RNA-Seq/métodos , Análise de Célula Única/métodos , Animais , Teorema de Bayes , Linhagem Celular , Humanos , Dispositivos Lab-On-A-Chip , Camundongos , RNA/análise , RNA-Seq/instrumentação , Análise de Célula Única/instrumentação
3.
Chest ; 156(4): 764-773, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31233743

RESUMO

BACKGROUND: Although e-cigarette (ECIG) use has increased in the United States, their potential health effects remain uncertain. Understanding the effects of tobacco cigarette (TCIG) smoke on bronchial airway epithelial gene expression have previously provided insights into tobacco-related disease pathogenesis. Identifying the impact of ECIGs on airway gene expression could provide insights into their potential long-term health effects. We sought to compare the bronchial airway gene-expression profiles of former TCIG smokers now using ECIGs with the profiles of former and current TCIG smokers. METHODS: We performed gene-expression profiling of bronchial epithelial cells collected from current TCIG smokers (n = 9), current ECIG users who are former TCIG smokers (n = 15), and former TCIG smokers (n = 21). We then compared our findings with previous studies of the effects of TCIG use on bronchial epithelium, as well an in vitro model of ECIG exposure. RESULTS: Among 3,165 genes whose expression varied between the three study groups (q < 0.05), we identified 468 genes altered in ECIG users relative to former smokers (P < .05). Seventy-nine of these genes were up- or down-regulated concordantly among ECIG and TCIG users. We did not detect ECIG-associated gene-expression changes in known pathways associated with TCIG usage. Genes downregulated in ECIG users are enriched among the genes most downregulated by exposure of airway epithelium to ECIG vapor in vitro. CONCLUSIONS: ECIGs induce both distinct and shared patterns of gene expression relative to TCIGs in the bronchial airway epithelium. The concordance of the genes altered in ECIG users and in the in vitro study suggests that genes altered in ECIG users are likely to be changed as the direct effect of ECIG exposure.


Assuntos
Brônquios/citologia , Sistemas Eletrônicos de Liberação de Nicotina , Células Epiteliais , Regulação da Expressão Gênica , Fumar/genética , Adulto , Fumar Cigarros/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Fumar/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...